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Abstract-Gene Selection aims to find a subset of highly informative genes from a problem domain which
retains high accuracy to represent original genes. Rough Set Theory is adopted in this paper to discover the
data dependencies and to reduce the number of genes contained in the dataset using the data alone without
requiring additional information about the genes. Selecting genes in unsupervised learning scenarios is a
harder problem than supervised gene selection due to the absence of class labels that would guide the search
for relevant genes. PSO (Particle Swarm Optimization) is an evolutionary computation technique, which
finds global optimum solution in many applications. This paper studies the performance of Unsupervised
PSO based Relative Reduct (US-PSO-RR) and Unsupervised PSO based Quick Reduct (US-PSO-QR)
approaches by applying it for a set of gene expression datasets to find the harmful genes easily. These two
algorithms employs a population of particles existing within a multi-dimensional space and dependency
measure that combines the benefits of both PSO and rough setsfor better data reduction. The effectiveness of
the algorithmsis measured by using various clustering accuracy indices.

Keywords-Particle Swarm Optimization (PS, quick reduct, relative reduct, rough setssupervised gene
selection.

[.  INTRODUCTION

Selecting a subset of genes out of thousands @&sgara micro array data set without any informatass is
very important to classify highly expressed gened highly suppressed genes. The existing methagks tio
select either all attributes or one attribute atn@etwhich takes much time and it is computationathgtly to
select a subset of genes when it increases in gdioenT his paper discusses the performance of reagbase
unsupervised feature selectialgorithms which adopts Particle Swarm Optimizatiechnique that spawns in
possible directions at the very first time itsel§tead of scanning the genes in the database aggiagain as it |
being done in the conventional feature selectiothods.

Discriminant analysis is now being used in bioinfatics, such as distinguishing cancer tissues frormal
tissues [2] or one cancer subtype vs. anotheFgjture Selection (FS) [5] is defined as the pralié selecting
more informative subsdtom a set of features based on some criterion. génees removed should be no
redundant or of the least possible use. Genestsdlsbould preserve the original meaning of theegaafte!
reduction. A procedure which reduces the dimendiynasing the existing information in the dataset ¢
preserves the meaning of the genes is clearly atd#sir Rough set can be used as a tool to discoaa
dependencies and to reduce the number of genesimetin a dataset using the data alone. Featlgeiion
algorithms are classified as Filter approach andpfer approach. Filter based methods are effidizar
wrapper based since it does not depend on any tindualgorithm. Although wrappers produces goodiltss
they are expensive to run, and weduct more number of features. PSO, guides searttfetoptimal minima
subset every time is a heuristic fileased method and is attractive for gene selection.

By using these approaches for selecting genegehefits of standard PSO and Rough < combined, the
strict requirement of fithess function is relaxddpendency among the attributes are introducecntbrced tc
select; thus a more flexible approach to predictivieset selection can be develo

The rest of the paper is organizei follows. Section 2 focuses on research backgro8edtion 3 discusst
rough sets. Section 4 presents Unsupervised PSéd tfaature selection algorithms. Worked examplex
presented in Section 5. Experimental results aesgmted and compared in son 6. Section 7 concludes t
paper.
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II. RESEARCHBACKGROUND

Two different types of approach to unsupervisedufeaselection have been adopted: those which nmz&im
clustering performance using an index function [B},], and those which consider features for salaabn the
basis of dependency or relevance. The Quick Reg@ie) algorithm given in [8], [14], attempts to calate a
reduct without exhaustively generating all possilibsets. The Relative Reduct (RR) algorithm, appfor
gene selection is based on the measure of baclelianthation of genes where attributes are removenhfthe
set of considered genes if the relative dependegogls one upon their removal. Genes are considaredt a
time, starting with the first, evaluating their agte dependency. One of the existing unsupervisature
selection algorithms USRR [16] calculates the ddpeny measures for every attribute. A new USQR
algorithm is proposed in [17iptroduces a new positive region based unsupensgsbedet evaluation measure
using RST. In this method evaluation of the degredependency value for a feature’s subset lead=ath
conditional attribute and evaluates mean of deperydealues for all conditional attributes. In USGQRd
USRR methods, no decision attribute is requirethdfrelative dependency is equal to 1, even adteoving a
feature; then that feature can be removed. Buakiés much iteration to converge which increases tmd
degrades the performance. With the help of thebeidiged methods, high informative genes can beatedl in
minimal iterations, and so it takes less time. Getat are identical in many aspects are also deresl as
irrelevant and removed which results in informatioss. Tolerance QuickReduct algorithm for supemis
learning is proposed in [15].his approach uses a threshold instead of ched¢kimgimilarity to 1 exactly. The
choice of threshold in this method permits attrébuglues to differ to a limited extent, allowingsé values to
be considered as identical. Unsupervised PSO b@sirk Reduct (US-PSO-QR) is presented in [7] which
starts by considering an empgt and then adds one feature at a time and clieeldependency between the
features. It takes more number of iterations toveoge and time as well. Unsupervised PSO baseatiiRe!
Reduct (US-PSO-RR) is presented in [6] which sthststaking all the attributes as one set at a tand
dependency measure is checked. If the dependency eqjual to 1, that attribute can be removed.

For dataset without decision class, both clusteanglassification techniques are applied and #weegated
results such as clusters or classes are considesedecisions followed by feature selection methods.
Unsupervised Feature Selection methods do notneequly clustering or classification prior to gepestion.

This paper presents a study of unsupervised featleetion algorithms which integrates the merft® 80
and Rough sets.

1. ROUGHSETS

The rough set methodology was introduced by Pafillakin the early 1980s as a mathematical tooldald
with uncertainty. It helps to discover data depewries and to reduce the number of attributes, uiaglata
alone. It requires no additional information [5]L0]. The basic concepts of the rough set theory igd
philosophy are presented and illustrated with eXxampn the tutorial [18]. With the help of roughtse
irrelevant attributes can be removed with mininmbimation loss.

A. Lower and Upper Approximations

Letl = (U, A) be an information system. Whddeis the universe with a non-empty set of finiteemt$, A is
a non-empty finite set of condition attribut®& € A, There is a corresponding functiépU — V, whereV,

is the set of values of a. L¥tc U, the P-lower approximatioPX and P-upper approximatid@X of a setX can
be defined as:

PX={x €eU|[x],c X} (1)

PX={x €U|[x],nX # 0} 2)
LetP,Q < A be an equivalence relations over U, and then diséipe region can be defined as:

POSp(Q) = Uxev o PX (3)

B. Relative Dependency Measure and Fitness Value
The unsupervised Relative Dependency measurefdarticular particle is defined as follows:

U/ IND(R)|
|U/IND(RU{a}) |

Yr (@) = a¢ R (4)
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WhereR is the subset selected by the particle and thenrdependency of selected gene subset, on all thesge
that are not selected by the particle is usedeafttiess value of the particle.

Fitness(X;) = Vr(y)Vy ¢ R 5)

V. UNSUPERVISEDPSOBASED FEATURE SELECTION ALGORITHMS

Particle Swarm Optimization (PSO) is an evolutigneomputation technique [9]. The original idea was
graphically simulate the movement of bird flockibghavior. The authors of [13], introduced the coiha
inertia weight into the particle swarm optimizempt@duce the standard PSO algorithm.

A. Encoding
For applying US-PSO-QR and US-PSO-RR algorithmsh grarticle’s position is represented as binary bit
strings of length N, where N is the total numbepaiticles [13]. Each particle’s position is amibtite subset.

For example, if, b, cand d are attributes and if the selected randaticleais (1, 0, 0, 1) then the attribute
subset iga, d)

alb|lc|d
1{0| 0] 1

B. Representation and Updation of Velocity and Posgio

Each particle’s velocity is represented as a pasititeger varying between 1 aWgl.,. It implies how many
of the particle’s bit should be changed as thahefglobal best position.

For selecting genes, PSO is initialized with a pafion of particles. Each particle is treated gt in an
S-dimensional space. TH® particle is represented As= (X, %, ... , %). The best position of any partigiest
of any particle?, = (pi, P2, ---, &)- The index of the global best particle is représevygbest The velocity of a
particle isV; = (Viz, \ip, -.. \s). The particles velocity and position are updatetbdows:

Each particle’s velocity is updated using:
Via =w* vig + ¢ xrand() * (pig — Xig) + ¢z * Rand () * (pgq — Xia) (6)

wherew is the inertia weightc; and c, are acceleration constants. Based on velocityticRes position is
updated as follows:

* If V<xg randomly chang¥ bits of the particle, which are different from tlwd gbest.

* If V > xg, change all the different bits to be the samédasdfgbestand a further (V-xg) bits should be
changed randomly.

w can be calculated as follows

W= Wpay — Wmt;mwmn iter (7)
Here winay is the initial value of the weighting coefficiemi, is the final valuejter,, is the maximum
number of iterations and iter is the current iferat

Procedure for selecting genes using the US-PSOMRRittlam given in figure 1 is described as followsis
algorithm calculates a reduct set without genegadilh possible subset. It starts by selecting ramdalues for
each particle and velocity. A population of padilis constructed with random positions and vekxion S
dimensions in the problem space. For each paiXiclgé's are taken as the selected genes and 0'soastdered
as removed genes. The average dependency of selgses on each non-selected gene is computetthe If
mean dependency is equal to 1, then the gene sobtet particle is considered as the reduct $e¢hel mean
dependency is not equal to 1, Rkest(highest relative dependency value) of each pariscretained and the
best value of the entire population is retainedthas global best value. Then the position and vefoare
updated as defined above and the next populatigenerated and the fitness values are computedafcin
particle until fitness value of the selected geutesst becomes 1.

Procedure for selecting genes using the US-PSO{@&tithm given in Figure 2 is described as follows.
This algorithm calculates a reduct set without getieg all possible subset. It starts with an engsy and it
adds one attribute at a time, in turn. A populatafnparticles is constructed with random positicared
velocities on S dimensions in the problem spadeeBs function for each particle which is represérs 1, is
evaluated using the following equation.
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Algorithm: USPSO-RR (C)

Input . C, the Set of all conditional features

Output : ReductR

Step 1: Initialize X with random position and; With random velocity
V: X; « randomPosition (); V; « randomVelocity(); fit « 0; globalbest- fit;
gbest— X; .pbest(1) « X;

Fori=1...S
pbest(i) = X Fitness(i) =0
End For
Step 2: While Fitness != 1 // Stopping  Criterion
Fori=1,...,S// for each particle

V: X;; Compute fitness of feature subsetpf
R— Feature subset of, XL's of X))
Vacey
| U/ IND(R)|

|U/INDRRU {a}) |

Yr (@ =

Fit= 7, (y) Vy € R
If Fitness(i) >fit
Fitness(i) = fit

pbest(i) 5 X
End
If (Fit == 1)
return R
End if
End For
Step 3: Compute best fithess
Fori=1,...,S

If (Fitness (i) > globalbest)
gbest « X;; globalbest « Fitness(i);gbest « X;;
End if
End For
UpdateVelocity (); // Update Velocity'¥ of X;'s
UpdatePosition (); // Update position gsXContinue with the next iteration
End {while}
Output Reduct R

Figure 1. US-PSO-RR Algorithm

Fitness(i) = Yrum) VY €C N
_ |POST ypg )]
Whereyr i (y) = — ;7 — ’

A gene with highest fitness value is taked all possible combinations of the selected geitie tive other
genes are constructed. Fitness of the selecteds geitie different combinations is calculated. If tbherrent
particle’s fitness evaluation is better than Bigest then this particle becomes the current best engasition
and fitness are stored. Then, the current parsidighess is compared with population’s overallviwas best
fitness. If the current value is better thgivest then this is set to the current particle’s positiwith the global
best fithess updated. This position representbéise feature subset encountered so far, and isdsioR. The
velocity and position of the particle is then umhtThis process is carried out until the stopgiriterion is
met, usually a maximum number of iterations. Therreed feature subset is a US-PSO-QR set. Accortding
the algorithm, the mean dependency of each at&ribuibset is calculated and the best particle iserho
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V. WORKED EXAMPLE
A. Unsupervised PSO based Relative Reduct (US-PSO-RR)

To illustrate the operation of the US-PSO-Rl US-PSO-RR algorithms, it is applied to thengpia data
set given in Table 1, which contains four condioattributes. The population generated initially given in
Table 2.

Algorithm . USPSO-QR (C)
Input . C, the set of features
Output . Reductset R

Step 1: Initialize X with random position and; With random velocity
V:X; « randomPosition (); V; « randomVelocity(); fit « O; globalbest- fit;

gbest X,
Step 2: While Rtness ! = y.(y) Yy € C// Stopping criterion

Fori=1,..., S/ for eguiuticle

Compute fitness of feature sulo$ed;
R— Feature subset of; XL's of X))
Vx € R; Vy € C

[POST u ()]
Y1 U{X}(Y) = T
Fitness(i) = ¥, e (y)vyecC
End For
Step 3: Compute best fitness
Fori=1,...,S

If (fitness(i) > globalbgst
gbest « X;; globalbest « Fitness(i); pbest(i) « bestPos(X;); gbest « X;;
If fitness(i) F-(y) Vy € C
R « getReduct(X;)
End if
End if
End For
UpdateVelocity()lUpdate Velocity Vs of X;'s
UpdatePosition(); // Update Fosibf X;'s, Continue with the next iteration
End {while}
Output Reduct R

Figure 2. US-PSO-QR Algorithm

Table 1. Example Dataset
xelU a b c d

1 1 0 2 1
2 1 0 2 0
3 1 2 0 0
4 1 2 2 1
5 2 1 0 0
6 2 1 1 0
7 2 1 2 1
Table 2. Population Generated
Particles Position
X1 1 0 0 1
X2 0 1 0 1
X3 1 1 0 0
X4 0 1 1 0

For Particle X,

Initial population generated @, 0, 0, 1),Feature subset selected(é d), Feature subset removed(ls c).
HenceR ={a, d},Y ={b, c}; vae Y
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_INDel ARG 4

v ®) = T WEEmEsm 6
CINDel (14235 4

(= N Drom] . ARG 6 6%

Va(a)va €Y= —“"667;"'667) = 0.667

Since relative dependencyy (a) # 1, {a,d} is not the selected feature subset. Proceeditigisnway, after
few iterations, Population lik¥ = {0, 1, 1, 1}is generated and the dependency is calculateullaw/$

R={b, c, d}, Y={a}

@<= VNPl _ (@REBBEH6HT 7
Yk [INDp | (B2}BHAYEMEHT) 7

Yp@ vaey=1

Since, there is only one attribute¥Yn

B. Unsupervised PSO based Quick Reduct (US-PSO-QR)
For ParticleXy initially it starts withT < {}, then proceeds as follows

_ |POSty@ay@| _ 1234567 _ 7 _
T U{ad}(a) = [l T 1234567 7 1
|POST yaay (b)) 1{5.6,7} 3
b) = = = = =0.4286
Y1 ugaay (P [U] 1{1,2,3,4,56,7}| 7
|POSt ygaayc] 1{1,4,7}] 3
= = = = =0.4286
Y1 ugaay(©) U] 1{1,2,34,56,7} 7
@ = [POSy ey (D] _ 11234567} _ 7 _
YT ufaq) [U] 1{1,2,3,4,5,6,7}| 7
1404286+ 0.4286+1  2.8572
Yroaq ) VY EC= 2 = — = 07143

Tropag ) Vy € C=0.9286
Tro@n ) VY € C = 05714
Y1 U{bc}(Y); vy € C=0.9286

It proceeds like this, using global optintiaa method. It explores in all possible directioftsrandomly
selects the local and global optimization and coge® easily. Since, the dependency of attributest®qual to

1, next iteration is carried out. In the secondatien, randomly selected particles arec and dlt is denoted as
0,1,1,1).

|POSr vpeaya|  11,2,3,45,6,7} 7

= - =57 1
Y1 u{bca}@ U] 1{1,2,3,4,5,6,7}| 7

_|POSrymeayh| 112345673 7
Yr U{bcd}b = 1] T 1234567 7 1

c= |POST yipeasc| — 1(1,2,3,4,5,6,7}] = Z: 1

Y7 ubea) U] 1{1,2,3,4,56,7}| 7

_ [POStuweayd| _ 11234567 _ 7 _
Yr U{bcd}d = 1| T 1234567 7 1
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Vropeg ) VY EC=1

The subsetly, ¢, d produces the dependency 1.

VI.

EXPERIMENTAL RESULTS

In this section, the US-PSO-RR algorithm and US-F3algorithms are studied, compared and evaluated
using clustering indices.

A. Data Sets

Two datasets namely Leukemia and Lung Cancer gepeession datasets which are available in the
website http://datam.i2r.a-star.edu.sg/datasetd/Kil®] are taken for experimentation. The details of thaset
used are given in Table 3.

Table 3. Details of Gene Expression Datasets

Dataset Number of Class Number of
Genes Samples
Leukemia 7129 ALL / AML 34 (20/ 14)
Lung Cancer 7129 Tumor / Normal 96 (86/ 10

The data presented in Table 4, presents the nuafbggnesselected by the US-PSO-RR and US-PSO-QR

algorithms.
Table 4. Genes selected by US-PSO-RR and US-PSO-QR
Attribute US-PSO-RR US-PSO-QR No. of Att.
Index Data set Objects Size No. Of Att. No. of Att. r((a:(ll;]ctn?gr:n
Reducted Reducted
1 Leukemia 34 7129 3606 3558 2453
2 Lung Cancer 96 7129 3621 3607 2762

B. Comparison of US-PSO-RR and US-PSO-QR Methods

Genes are selected by the feature selection digwsitand are clustered in to two clusters. The géras
causes tumor are grouped in one cluster wherealsatimless genes are grouped in the other clufetaset
with class attribute is taken for our experimentheck the effectiveness of the feature selectigorithms.

The feature selection algorithms discussed in plaiper are applied without considering the classbate.
Clustering was performed on the reduced dataseishwhere obtained using the Unsupervised PSO based
Relative Reduct (US-PSO-RR) and Unsupervised P$8bQuick Reduct (US-PSO-QR) methods. Results are
presented in terms of clustering accuracy. To @talthe performance of the feature selection alyos we
used Mean Absolute Error (MAE), Root Mean SquamE{RMSE) [4] and Xie-Beni validity which measures
the compactness and separation of clusters [20BleT& and 6 shows the Rough K Means clustering
performance of features selected using US-PSO-RRJ&PSO-QR.

Table 5. Rough K Means Clustering Performance Ruatthe Features Selected using
Unsupervised PSO based Relative Reduct (US-PSO-RR)

Data Set Objects Rough K Meansfor US-PSO-RR
RMSE MAE Xie-Beni
Leukemia 7129 0.0296| 0.0871 0.1254
Lung 7129 0.0241 | 0.0641 0.3171
Cancer

Table 6. Rough K Means Clustering Performance Ruatthe Features Selected Using
Unsupervised PSO based Quick Reduct (US-PSO-QR)

Data Set Objects Rough K Meansfor US-PSO-QR
RMSE MAE Xie-Beni
Leukemia 7129 0.0963 0.217% 0.6083|
Lung Cancer 7129 0.0227 0.067f 0.2152
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Table 7 and 8 shows the K Means clustering perfan@aof the features selected using US-PSO-RR and
US-PSO-QR.

Table 7. K Means Clustering Performance Rate feRbatures Selected using
Unsupervised PSO based Relative Reduct (US-PSO-RR)

K Meansfor US-PSO-RR
RMSE MAE Xie-Beni

Leukemia 7129 0.0883  0.024b 0.4013
Lung Cancer 7129 0.0241  0.0641 0.2659

Data Set Objects

Table 8. K Means Clustering Performance Rate ferRbatures Selected using
Unsupervised PSO based Quick Reduct (US-PSO-QR)

K Meansfor US-PSO-QR
RMSE MAE Xie-Beni
Leukemia 7129 0.0364  0.108y 0.1076

Lung Cancer 7129 0.0501 0.1020 0.2347%

Data Set Objects

Figure 3, 4 and 5 shows the comparative analysRMSE, MAE and Xie-Beni index of Rough K Means
clustering for the genes selected by US-PSO-RRUBWPSO-QR. It is observed that Unsupervised PS@das
Relative Reduct (US-PSO-RR) approach selects moitabde genes for further medical analysis than the
Unsupervised PSO based Quick Reduct (US-PSO-QRdyagip.

Rough K M eans Performance Rate using
0.04
Root Mean areError
0.03
—
0.02 4 ==¢==| ung Cancer
=== | eukemia

0.01 -

0 T )

US-PSO-RR US-PSO-QR
Figure 3. Rough K Means Performance Rate using
Root Mean Square Error

0.25 - Rough K M eans Performance Rate using

’ Mean Absglute Error

0.2 |
0.151 ==t==|_ung Cancer

0.1 =@=| eukemia
0.05 -

0 r )
US-PSO-RR US-PSO-QR

Figure 4. Rough K Means Performance Rate using Méaolute Error

Rough K M eans Performanceusing

0.7 1 Xie-Beni | pdex

0.6 -
0.5 1
0.4 -
0.3 1
0.2
0.1 1

==g==] ung Cancer

e=fl==| eukemia

US-PSO-RR US-PSO-QR

Figure 5. Rough K Means Performance Rate usingB¢ie- Index
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Figure 6, 7 and 8 shows the comparative analysfiMBE, MAE and Xie-Beni index of K Means clusteriog

the genes selected by US-PSO-RR and US-PSO-QRoliserved that K Means also produces more suitable
genes selected by Unsupervised PSO based RelaiacR(US-PSO-RR) for medical analysis than theegen
selected by Unsupervised PSO based Quick ReducP&FQR) approach.

0.06 - K Means Perfor mance Rate using

' Root Mean eError
0.05 A
0.04 -
0.03 - === ung Cancer
0.02 - === | eukemia
0.01 |

0 . .
US-PSO-RR US-PSO-QR

Figure 6. K Means Performance Rate using Root Mizarare Error

0.12 - K Means Performance Rate using
Mean Algsolute Error

0.1 A
0.08 -
0.06 - ==g==| ung Cancer
0.04 - === | eukemia
0.02 -

0 T )
US-PSO-RR US-PSO-QR

Figure 7. K Means Performance Rate using Mean Aisdrror

0.3 - K Means Perfor mance Rate Using
0.25 - o—21E0Y Index
02
0.15 A ==¢==|ung Cancer
0.1 - ==@==| eukemia
0.05
0 T )
US-PSO-RR US-PSO-QR

Figure 8. K Means Performance Rate using Xie-Beték

VIlI. CONCLUSION AND FUTURE ENHANCEMENT

This section presents the results of the US-PSCGaRdR US-PSO-QR algorithms. Comparison is made to
suggest the more suitable genes for medical diagndke results are presented in terms of reductRsmigh
K Means and K Means clustering performances. Erpartal results for two gene expression data sets ar
presented. Unlike the other existing unsupervigaduire selection methods, which starts either afittempty
set or with a set of all features, US-PSO-RR aneP3®-QR approaches selects random particles ardregp
in all possible directions thus converges in glatyatimization. These approaches are highly suitédridarge
datasets. The efficiency of the two feature sedectpproaches discussed in this paper is cleathjbited.
Although the US-PSO-RR approach selects more géhas the US-PSO-QR approach the clustering
performance result shows US-PSO-RR approach isritétin US-PSO-QR approach. The empirical resldts a
reveal the importance of using US-PSO-RR for dé&saadich has no decision attributes. In future shene
approach can be extended to medical image dafasetgncer diagnosis.
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